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We report on a numerical analysis method for diffractive optical elements that consist of features ranging from
subwavelength to more than 10\. The essence of the method is treating local structures of the optical elements
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lenses with one-dimensional structures for investigating polarization properties. © 2009 Optical Society of
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1. INTRODUCTION

Numerical tools for designing and analyzing diffractive
optical elements (DOEs) depend on diffraction domains
determined by the feature sizes compared with the wave-
length [1]. Perhaps the most widely used DOEs in a vari-
ety of applications would have feature sizes between \
and several tens of A, A being the wavelength of light in
vacuum, but analyzing such DOEs is not so easy [2]. In-
clusion of small features makes full scalar theory less ac-
curate, while full vector theory is too heavy to implement.
Therefore, some sort of hybrid approach should provide
comfortable computation speed with acceptable accuracy.
Several approaches have been reported for challenging
this problem [3-5].

For this purpose, we propose to use a method in which
a local structure of an optical element is assumed as an
infinitely extending diffraction grating. We refer to it as
local grating theory (LGT). This concept was mentioned
in the literature as early as 1962 [6]. In terms of diffrac-
tive optics, perhaps Noponen et al. first explicitly stated
“a diffractive lens may be viewed locally as such a grat-
ing” [7], p. 437. Their purpose for this approach was to im-
prove diffraction efficiency of diffractive lenses in the
resonance domain, and such gratings were expected to be-
have as prisms. Sheng et al. expanded the method for op-
timizing two-dimensional circular diffractive lenses [8],
and Kleemann and Guther conducted further detailed
study [9].

In this paper, we apply a LGT whose basic concept is
similar to those of [8,9]—but in a form -easier to
implement—to one-dimensional micro-fresnel lenses.

There are two reasons for wusing simpler one-
dimensional structures rather than more practical and
useful two-dimensional ones. First, we need to know the
accuracy and applicability of the LGT by comparing re-
sults with those of other well-established numerical
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methods, such as the Fourier modal method (FMM) [10]
and the finite-difference time-domain (FDTD) method
[11], in addition to experimental data. Second, we would
like to investigate the polarization-handling ability of the
LGT, for which experiments with one-dimensional struc-
tures are ideal.

2. PRINCIPLE

As the term local grating theory indicates, the local struc-
ture of a DOE with a wide variety of feature sizes is as-
sumed as a diffraction grating. For example, in the case of
a micro-Fresnel lens, each zone is assumed to behave as if
it were a one-dimensional grating of infinite extent, and
the function of the entire lens is obtained by summing up
the effect of each zone. An analyzed optical system is
shown in Fig. 1. Diffractive surface relief structure is cre-
ated at the boundary of two half-spaces with refractive in-
dices n; and ny. A plane wave normally illuminates a
micro-Fresnel lens whose surface relief depth, focal
length, and radius are k&, f, and r, respectively. Propaga-
tion through the surface relief diffractive structure is ana-
lyzed by any electromagnetic diffraction grating theory,
but in an approximate way. We employ the FMM because
of its widely accepted accuracy and computation speed in
addition to relative simplicity for implementation.

A. Complex Amplitude
First of all, the phase profile of a micro-Fresnel lens of L
phase levels is

dx)=1D, for — (I +1)® <mod[¢y(x),27] < -ID,
(1)

where
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Fig. 1. Analyzed optical system. Surface relief layer -h <z<0 is
analyzed by an electromagnetic diffraction grating theory.

bo(@) = 2mmy(f = \f* + %)\ (2)

is a phase profile of an aberration-free lens, 0</<L-1,
®=-27/L, and mod(p,q) denotes the remainder of an op-
eration p/q. In this way, a position x and a discrete phase
at the location are related. Now, the number of zones cor-
responding to a 27 phase is given by

My =int[(\/2+r* =N +1, 3)

where r is a diameter of the lens and int(g) denotes the
maximum integer that is not larger than q.

We place equally spaced sampling points at x=x(n)
=nAx—where Ax=2r/N and n 1is an integer of
|n|<N/2—for evaluating complex amplitudes, and the
values of them at the exit plane of the micro-Fresnel lens
are computed with the FMM (see Fig. 2). In applying a
fast Fourier transform (FFT) algorithm, n must be a
power of 2 and a sampling point numbered n=0 must be
at x=0. Then, the two points x=r and -r are equivalent.

The locations of an outer boundary of an mth subzone
of equiphase is

X, = ymANE + 2mLAL. (4)
Note that the outermost zone and subzone are limited by
the lens radius, of course.

At sampling point x(n), the lens is assumed to behave
as an L-level phase grating with period of

d(n) =xp,1 - xp, (5)

where x,,_;<x(n)=<x,, and P=int[(m-1)/L]L. The grat-
ing depth at x(n) is then

N(Z -1

e~ . .- - -o o - - Exitplane

. M - - -o-o mf - Incident plane
0 77‘ Incident wave

2r
Fig. 2. Location of sampling points and their numbering order
in the surface relief layer of a micro-Fresnel lens, for example. 6
is an incidence angle.
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N ) m-1 m
h(n)=|n2_n1| int 7 _Z+1 . (6)

For example, in the case of L=4 (Fig. 3), the period is xg
—x4 and the depth is 2’ at the sampling point of x(n). Here

h' =)\/L|n2—n1| (7)

is the depth corresponding to a single phase step.

Complex amplitude u(n,0) at x=x(n) and z=0 is given
by the FMM assuming that the jth zone is treated as a
grating of period d;=x;;,—x_1)z, (Fig. 4) with the represen-
tation

u(n,0)= >, T, exp(ia,X), 8

q

where T, is the complex amplitude of a transmitted plane
wave of qth order, a,=2m(n;sin 6/\+q/d;), and X is the
distance from the inner boundary of the zone to x(n).
Then, even if two sampling points are located in the same
subzone, different complex amplitude values are as-
signed. Applying the FMM here, the effects of reflection
can be included in evaluating optical power in the focal
plane.

In addition, it is convenient to convert u(n,0) in Eq. (8)
in the following way:

u(n,0)\ny/ny, for TE

9
u(n,0)\ni/ny, for TM ©)

u(n,0) —

This enables direct comparison of finally obtained inten-
sity profiles between TE and TM polarization at the end
of the simulation.

B. Propagation from the Lens to Focal Plane
Now complex amplitude distribution in the exit plane of
the lens is obtained. Wave propagation from the exit
plane of the micro-Fresnel lens to the focal plane is
treated with the concept of propagation of the angular
spectrum [12].

At first, the complex amplitudes are Fourier trans-
formed to yield the angular spectrum at z=0,

Aj(0) = DFT{u(n,0)}. (10)

Here, DFT denotes discrete Fourier transform and in
practice it is computed with a FFT algorithm. The angu-
lar spectrum in the plane at a distance z away from the
exit plane of the micro-Fresnel lens is given by

Ai(z) =A;(0)expli(27my/N)z\1 - (Vj)\/nz)z] , (11)

where v;=j/2r is the spatial frequency of a plane wave
propagating in the direction of sin‘l(vj)\/nQ). Then, the
complex amplitude of the same plane is obtained as

Fig. 3. Sampling point and grating depth in the case of L=4, as
an example.
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Fig. 4. Definition of local period and application of the FMM.

u(n,z) = IDFT{A;(2)}, (12)

where IDFT denotes inverse discrete Fourier transform,
and the finally observed value is the intensity profile

I(n) = u(n,2)|*. (13)

One of the advantages of using angular spectrum repre-
sentation is that the effect of defocusing can be easily
computed with Eq. (11).

3. RESULTS

We present results of numerical simulation of focusing
properties of normally illuminated one-dimensional
micro-Fresnel lenses with LGT. To evaluate reliability of
the LGT, obtained results are compared with two well-
established fully electromagnetic numerical methods, i.e.,
the FMM and FDTD methods together with experimental
observation. In the present analysis, the propagation pro-
cess from Eq. (10) to Eq. (13) is the same for all three
methods. The parameters of the three lenses considered
here are given in Table 1.

As described in Section 2, the straightforward imple-
mentation of the LGT assumes illumination of an optical
element, i.e., a micro-Fresnel lens here, by a plane wave.
This is tricky and contradictory, because a plane wave as-
sumes an infinitely wide space, strictly speaking. So, the
actual model here is that at each sampling point a light
wave with unit amplitude is normally incident on the
lens. This model considers the cylindrical micro-Fresnel
lens as an infinite lens array with both the FMM and the
FDTD methods, in which an individual micro-Fresnel
lens corresponds to a grating period. As the output wave
from the lens is focused, any effect of the diffracted wave
from neighboring periods would be negligible at least
near the focal spot, and thus treating a single lens as a
lens array would not be unrealistic. This view is also sup-
ported by a remark in the Discussion and Conclusions of
[7].

As to experiments, focused spot profiles were measured
by the setup shown in Fig. 5. Introduction of a quarter-

Ichikawa et al.

A4 plate
Micro-Fresnel lens
ND filter Polarizer
He-Ne laser
632.8 nm Aperture CCD camera
Expander (x5) Objective lens (x100)

Fig. 5. (Color online) Experimental setup.

wave plate and a polarizer in the setup was for changing
the polarization state of the incident wave easily. Figure 6
shows a central 275 um X210 um portion of a micro-
Fresnel lens of f=1 mm and r=0.75 mm fabricated on a
silica substrate by electron-beam lithography. Careful ex-
amination of this micrograph reveals that the widths of
ridges were 0.1 um greater than designed values over the
entire area of the lens, while sizes of local periods were
correctly realized. This fact was reflected in the following
simulation for Cases B and C.

Parameters used in the simulation are listed in Table 2.
These values should be accepted as a set of necessary con-
ditions for accurate computation considering convergence;
justification for this is explained below in Section 4.

A. Case A

Case A is a four-phase-level lens of f=100\ and r=50\,
thus giving f/1, as an object of numerical simulation only.
The number of sampling points N for the FDTD method is
four times the value of the other methods, because a cell
size of =\/40 corresponding to N =4096 is required to con-
duct accurate computation.

Intensity profiles of a focused spot in the best focal
planes are shown in Fig. 7(a). Here, vertical scale is nor-
malized with intensity of the incident wave, i.e., correctly
including the effects of reflection and diffraction. It can be
observed that the curves for the LGT, FMM, and FDTD
methods are almost the same, but the best focal planes
are at different axial positions between 0.5\ and 0.7\ as
given in the caption of Fig. 7. Also included in the figure
denoted as “ideal” (top curve) is a result assuming an ide-
alized aberration-free lens just as a reference. In this
case, the vertical scale is determined by multiplying I(n)
in Eq. (13) by (1-R)sinc(1/L), R being Fresnel reflection,
in order to include the effects of reflection and diffraction.

Shown in Fig. 7(b) is the change of intensities on the
axis, i.e., the effects of defocusing. Although there are
some differences in detail shape of the curves among the
three methods, overall tendency is again almost the same,
in particular near the best focal position. Deviation from a

Table 1. Parameters of Simulated Lenses

Zone Width Zone Width
Case f r L No. of Zones (Max) (Min)
A 100N 50N 4 12 14.2\ 2.26\
B 1580\ 1185\ 2 391 56.6\ 1.68\
C 1580\ 316\ 2 60 56.6\ 5.28\
B¢ 1 mm 0.75 mm 2 391 35.8 um 1.06 um
c* 1 mm 0.20 mm 2 60 35.8 um 3.34 um

“When A=632.8 nm is assumed in experiments.
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Fig. 6. Observed binary micro-Fresnel lens of f/=1 mm.

smooth curve for the ideal lens indicates the effects of dif-
fraction owing to the fine structure of the micro-Fresnel
lens.

B. Case B

Case B is a binary-phase level lens of f=1 mm and r
=0.75 mm, thus yielding f/0.67 designed at A=632.8 nm.
As the full aperture exceeds 1000\, it is not possible to ex-
ecute the numerical calculations with the FMM under the
authors’ computational environment. The results ob-
tained with the LGT and the FDTD methods are com-
pared with experimental data that are normalized with
an axial value of the LGT, because it was difficult to mea-
sure absolute values in the experiment owing to the size
of the micro-Fresnel lens.

In Fig. 8(a), we find that focused beam profiles of the
LGT and FDTD methods overlap perfectly. In addition,
the experimental result is almost the same, except that
one of two sidelobes for the experimental result is miss-
ing. The most probable reason for the differences from the
simulated results would be off-axis illumination during
the measurement.

Another noticeable phenomenon is that the maximum
intensities according to numerical simulation are signifi-
cantly lower than for an ideal lens. The main reason for
this is that first-order diffraction efficiency decreases as
the grating period becomes short, in particular at around
a few wavelengths; such an area occupies more than half
the aperture of this lens. The phenomenon is well known
and for more detail see, e.g., Fig. 4 in [7]. Despite this
phenomenon, quality of the focused beam is maintained,
because the FWHM for the LGT and an ideal lens are
similar with values of 0.43 and 0.45 um, respectively. In
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Fig. 7. (Color online) Focusing properties of a micro-Fresnel
lens of f=100\ and r=50.4\. (a) Spot profiles: Az=-0.7\ for LGT,
—-0.6\ for FMM, and -0.5\ for FDTD. (b) Intensity with axial
defocus.

addition, good agreement among the data on the effects of
axial defocusing is observed in Fig. 8(b).

In considering the fact that the modal method on which
the LGT is based and the basis of the FDTD method are
totally different numerical method techniques in prin-
ciple, it must be considered impressive that the LGT and
the FDTD methods gave almost the same results in Fig.
8. This would indicate the great validity and real useful-
ness of the LGT.

C. Case C

Case C is the same as Case B, but the aperture is re-
stricted to r=0.2 mm, thus giving //2.5. Here in Fig. 9, the
general tendency is the same for the three curves. The
somewhat deformed focused beam profiles for the LGT
and FDTD method are for a defocus distance of +4.6 um.
The origin of this deformation would be explained in the

Table 2. Parameters for Simulation

Time Steps per Time

Case N J JFMM NFDTD Period in FDTD
A 1024 40 4096 64
B 32 768 40 131072 128
C 8192 40 16 384 64
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Fig. 8. (Color online) Focusing properties of a micro-Fresnel

lens of f=1 mm and r=0.75 mm. (a) Spot profiles: Az=0 for both
LGT and FDTD. (b) Intensity with axial defocus.

following way. In a system of higher f number such as the
Case C, higher-frequency components from neighboring
periods more easily interfere with the focused beam than
in a lower-f-number system such as in Case B. Obviously,
a different shape of focused beam profile is obtained at a
different defocus value.

Another feature in this case is that the absolute values
obtained for the LGT and for the FDTD method are com-
parable to that of an ideal lens. The minimum zone width
at the edge of this lens is 5.28\, which is large enough to
avoid the efficiency-spoiling effect for gratings in the reso-
nance domain mentioned in Subsection. 3.B.

D. Polarization Sensitivity

The biggest reason for employing the one-dimensional
micro-Fresnel lens here, while there are earlier reports
[8,9] of two-dimensional analysis, is that we would like to
compare the polarization properties of simulated and ex-
perimental results. In practice, we compared the power
ratio within the main lobe of the focused spots to various
aperture sizes as shown in Fig. 10. In the LGT, the value
is estimated as the sum of I(n) defined in Eq. (13) within
the main lobe, while in experiments the value is the inte-
gral intensity of a CCD sensor array. Because of difficulty
in accurately measuring incident power in experiments,
both simulated and experimental values are normalized
with the value of TM polarization at »=0.75 mm in Fig.
10 for easy comparison.
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Fig. 9. (Color online) Focusing properties of a micro-Fresnel
lens of f=1 mm and r=0.2 mm. (a) Spot profiles: Az=4.6 um for
both LGT and FDTD. (b) Intensity with axial defocus.

It is clearly seen that the focused power difference be-
tween TE and TM polarization becomes larger as the lens
aperture widens. Moreover, the simulation gives quanti-
tatively similar results to those of the experiments for
wider apertures. The discrepancy for narrower apertures
would be mainly due to difficulty in positioning apertures
in experiments.

4. CONVERGENCE

Prior to the actual simulation in Section 3, we conducted
a convergence study of each method by changing the num-

—
N

™ .o
o
-e

TE

o Experiment
L L

0.8 1.6
Full aperture width 27 (mm)

Relative intensity (linear scale)

e
=

(=]

Fig. 10. Comparison between LGT and experiments: power
within focused spot of a micro-Fresnel lens of f=1 mm. Solid
curve, LGT for TE; dashed curve, LGT for TM. Solid circles, ex-
periments for TE. Open circles, experiments for TM. All data are
normalized with the value of »=0.75 mm for TM.
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bers of truncation orders ¢/ for the LGT and FMM and
unit cell sizes for the FDTD method. For this purpose, we
chose Case A as a model structure.

For the LGT and FMM, the most important parameter
is the number of truncation orders </, as it determines the
eventual accuracy in modal methods. We first looked at
the shapes of focused profile at the best focus. As they are
almost independent of ¢/, the peak intensities at x=0 are
compared. Figure 11(a) may indicate that J=20 for the
LGT and J=160 for the FMM are minimum require-
ments. Then, we investigated defocusing effects in Fig.
11(b), which suggests that J=40 for the LGT and J=320
for the FMM are necessary for sufficient convergence. We
confirmed that a curve with J=80 completely overlapped
with that of J=40 for the LGT.

While the number of sampling points IV is mere spatial
resolution and has no effect on quality of simulation for
the LGT and FM), it is a crucial parameter for the FDTD
method. Here, we used almost the same cell size ~2r/N
for both the x and the z directions. We found that the cell
size of N/40 is necessary for accurate computation, and
time steps corresponding to 30 time periods are necessary
for stable computation.

For Case B, the above results are modified considering
the structural differences. J=40 is chosen by comparing
minimum feature sizes and the numbers of layers L. N
and Ngprp are determined by comparing lens apertures.
The parameters for Case C are the same as for Case B,

—~ 2
L
[+
2 LGT
g .\'\._——o—o—o
.g O
2 FMM
72} F;
g
E ?
(]
2
=
[}
M
1 10 100 1000
Number of truncation orders J
(a)
8
FMM (J = 160) LGT (/=20)

LGT (J=40)

FMM (J = 320)
FMM (J = 640)

Relative intensity (linear scale)

-5 0 5
Axial defocus Az (L)

(b)

Fig. 11. (Color online) Convergence study. (a) Peak intensities
at x=0 for the best focus. (b) Intensities at x=0 with axial defocus
for various numbers of truncation orders.
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because it simulates simply covering the outer portion of
the aperture of the lens. This is necessary for comparison
with the experimental data.

It would obviously be more efficient to modify conver-
gence conditions depending on the local period size, if an
object of numerical analysis is fixed. However, our inten-
tion is applying the LGT to optimizing structure of DOEs,
and in the course of the procedure, the local period size is
always changing. Therefore, we decided to fix the value of
J in the whole aperture.

5. DISCUSSION

We have demonstrated that the LGT does work satisfac-
torily with much fewer number of truncation orders than
the full vectorial FMM. To explain the reason for this, let
us look at the properties of local gratings over an entire
lens aperture, assuming Case B as an example. In Fig.
12(a), the distribution of the local period is drawn with a
solid black curve. At five selected positions, the required
numbers of truncation orders for convergence of transmit-
ted first-order diffraction efficiencies within 1072, 1073,
and 10~* are plotted with filled circles. Also, how this pa-
rameter converges at each position is shown in Fig. 12(b).

Obviously, the central portion of a lens is composed of
local gratings of large periods that need large number of
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Fig. 12. (Color online) Why does the LGT work satisfactorily
with a much smaller number of truncation orders than the full
vectorial FMM? Case B is assumed as a model. (a) Left vertical
axis, local periods of a lens; right vertical axis, required numbers
of truncation orders. Three circles correspond to convergence of
first-order diffraction efficiency within 10-2, 10-%, and 10~* as-
suming a rectangular grating of fill factor 0.5 with the same pe-
riod. (b) Convergence of transmitted first order for the grating
mentioned in (a). The values denote the grating period in um.
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truncation orders, but this area is limited. For example,
at x=129 um the local period is 5.1 um, and only 26 trun-
cation orders ensure convergence within 1073, This means
that 83% of the lens aperture can be handled with fewer
truncation orders. Therefore, the LGT would give compa-
rable results with much fewer number of truncation or-
ders than the case in which the entire aperture is consid-
ered as a grating period.

The fewer number of truncation orders means faster
computation. Relative computation time for the LGT and
FMM assuming Case A is shown in Fig. 13. For the same
J, the LGT needs more time than the FMM, because it
has to conduct the process of the FMM for each local grat-
ing structure. However, as described in Section 4, the
LGT needs only J=40 for computation of the same accu-
racy as the FMM with J=320. As a result, the LGT is 77
times faster than the FMM for this particular problem.
This is shown in Table 3, which summarizes relative com-
putation time considering convergence.

In comparing with the FDTD method, the advantage of
the LGT is more notable, because the FDTD method
needs finer sampling point spacing for computation of the
same accuracy. This is particularly important in comput-
ing large structures such as in Case B.

6. CONCLUSION

We have demonstrated enormous potential and useful-
ness of the LGT, that is, treating local structures of opti-
cal elements larger than the wavelength as diffraction
gratings. The method is based on the FMM, but needs
many fewer truncation orders than the direct application
of the FMM, which treats the diffractive lens as a whole.
Its biggest advantage is computation speed: tens to thou-
sands times faster, depending on problems treated, than
straightforward implementation of existing numerical
methods to obtain results with similar accuracy.

Another advantage of the concept of the LGT is that
any rigorous grating electromagnetic method e.g., C [13],
differential [14], integral [15], boundary integral [16], and
finite element [17] methods, can be used by simply replac-
ing the FMM here with them.

Although rigorously speaking the LGT may not be a
genuine electromagnetic numerical method, it can pro-
vide comparable results as shown here, and there are nu-

10*

10° t
10° | FMM
10"

10° f

Relative computation time

10" B : : : : : :
0 160 320 480 640
No. of truncation orders J

Fig. 13. Comparison of computation time between the LGT and
FMM with various numbers of truncation orders.
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Table 3. Relative Computation Time for the Same
Quality of Computation

Case LGT FMM FDTD
A 1 77 240
B 1 — 1900
C 1 — 580

merous applications that would benefit from the LGT in
practical optical design communities.

We believe that the real potential of the LGT is in
analysis of two-dimensional optical elements and are at
the moment working on its formulation together with ex-
perimental verification.
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